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ABSTRACT 

 
This paper introduces and describes a new extension to 
Petri-Nets that provide additional mechanisms for the 
modeling of dynamic, distributed and concurrent 
behavior. The extensions provide for the creation and 
destruction of conventional Petri-Net Places and 
Transitions providing dynamic behavior of Petri-Net 
operation. We call this new Petri-Net model Dynamic 
Petri-Nets (DPN). With this new model, the structure of 
the Petri-Net, i.e. the interconnection of Places and 
Transitions, will evolve over time. The paper introduces 
specific rules for the Place/Transition modifications, and 
presents some new and well known properties of Petri-
Nets under these modifications. A Many Sorted 
Algebraic model of the DPN is presented that formally 
describes the techniques and relationships presented 
informally. Finally, an example of the use of these 
extensions is presented to represent the broadcast nature 
of mobile ad hoc and distributed sensor networks.  
 

1.  INTRODUCTION 
 
In mobile ad hoc networks and sensor networks, it is 
critical to accurately represent dynamic behavior in a 
precise and rigorous fashion.  The dynamic behavior 
includes not only state change, but also changes in 
structure. A number of mathematical techniques have 
been developed over the years to address this problem, 
including finite state machines and Petri-Nets, but they  
have focused primarily on the representation of state 
change.  
 
Finite state machines have addressed the problem of 
representation dynamic behavior only through a change 
in state. The mathematical model of a finite state 
machine includes a finite set of states and a set of arcs 
interconnecting those states, a set of inputs, a set of 
outputs, and a unique start state and a set of end of 
terminating states.  While both deterministic and non-
deterministic state machines have been studied, it is well 
known that every non-deterministic state machine has an 
equivalent deterministic finite state machine, and hence 
provides no further increase in dynamic representation. 
The change in state is driven by some input stimulus 

which may cause a state change and generate some 
output.  
 
Petri-Nets were first created by Carl Petri in his 
dissertation “Kommunikation mit Automaten” in 1962.  
Petri-Nets are essentially bi-partite directed graphs, 
where the nodes are called either a Place or a Transition. 
A Place is similar to a state in a classic finite state 
machine, while a Transition is a representation of some 
type of action or activity. Entities called Tokens, which 
are typically integers, are assigned to Places, and, 
“move” through the Petri-Net from Place to Place under 
the action of Transition firing or executing. A set of 
specific rules govern the firing or execution of a 
Transition, and hence the movement of Tokens from 
Place to Place. Petri-Nets have the ability to represent 
synchronization, concurrency and non-determinism. 
While finite state machines and conventional Petri-Nets 
represent the concept associated with a change of state, 
they are very limited in their ability to represent changes 
in structure, and to represent those structural changes as 
an explicit function of time.  
 

2.  PROBLEM STATEMENT 
 
The main technical challenge is to find a way to 
represent the structural changes of network behavior, 
consistent with the conventional representation of 
dynamic state change, synchronization, concurrency, 
non-determinism. The representation must be 
mathematically based and explicitly represent timed 
structural behavior.  
 
This research creates and develops a new extension to 
Petri-Nets that provide additional mechanisms for the 
modeling of dynamic distributed and concurrent 
behavior.  We call this new type of Petri Net a Dynamic 
Petri-Net (or DPN). The extensions provide for the 
creation and destruction of both conventional Petri-Net 
Places and Transitions through the dynamic behavior of 
Petri-Net operation. Thus the structure of the Petri-Net, 
i.e. the interconnection of Places and Transitions, may 
evolve over time. Thus the DPN can represent both 
structural change, as well as conventional state change 
(as represented by different Markings).  It is anticipated 
that this work will support ongoing research efforts in 
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Network Science (National Research Council 2005). In 
order to add the proper context, we first review 
conventional Petri-Nets.  
 
3. REVIEW OF CONVENTIONAL PETRI-

NETS 
 
A conventional Petri-Net is represented as a 4-tuple: 
 

PN = (P, T, A, M)    
 
where 
 

P is a finite set of distinct Places, where each Place 
may contain zero or more integer Tokens, 
 
T is a finite set of distinct Transitions, (which are in 
effect Boolean functions) 
 
A is a set of directed and optionally weighted edges, 
whose members are represented by the ordered pair (p, 
t) or (t, p) (where the edge may have a tuple of 
attributes) and p is a member of the set P, and t is a 
member of the set T.  
 
M is the initial Marking of the Petri-Net (the initial 
assignment of Tokens to Places). We assume that the 
Tokens are indistinguishable, and are use to mark the 
Petri-Net. While they are typically integer values, they 
may also be any type of object. 

 
We note that some Places may have only incoming 
(outgoing) arcs corresponding to final (initial) Places. 
Similarly, we note that some Transitions may have only 
incoming (outgoing) arcs as well.  
 
Formally,  

 
We also define the reachability graph (may be finite or 
infinite) as a directed graph whose nodes are the 
individual and distinct Markings, and the edges are the 
Transitions that inter-connect the Markings.  Thus 
 
 RG = (M, T)            
 

where  
 

M is the (possibly infinite) set of Markings,  
 

T is the set of Transitions interconnecting the 
Markings M. 

 
Further details about conventional Petri-Nets may be 
found in (Murata, T.,1989; Zuraski, R., and Zhou, M.  
1994; and Sreenivas, R.S, 2006). 
 

4.  THE DYNAMIC PETRI-NET (DPN) 
MODEL 

 
In conventional PN, the sets of P, T, and A are FIXED, 
and the dynamic behavior is represented ONLY through 
the set of Markings, as Tokens move from Place to 
Place. The DPN provides the capability of Places, 
Transitions, or both to change as a function of time. 
These additional behaviors are as indicated below.  
 
4.1 A Conceptual View of the DPN 
 
As indicated above, the essential idea for DPN is that we 
will permit the PN structure (that is the sets P, T, and A) 
to evolve over time by the addition or deletion of Places 
and/or Transitions.  In general we term the structure (or 
bi-partite graph) of a DPN as a configuration.  We 
model the action of Place or Transition insertion (or 
removal) into a sequence of atomic actions as follows: 
 

1. The creation (or deletion) of a Place or 
Transition to/from DPN.  

2. The creation, deletion, or modification of the 
connections between Places and Transitions.  

3. The creation, deletion, or modification of the 
connections between Transitions and Places.  

 
We note that in this formulation, it is possible to have a 
system that does not completely conform to the 
conventional notation of a PN, i.e. we admit that there 
may be isolated Places or Transitions that are not 
connected to the rest of the DPN.  We term these as a 
free-Place or a free-Transition. We note that atomic 
action 1 must be completed before atomic actions 2 
through 3 can take place.  
 
While the above actions represent changes in the DPN 
structure, we still must address the issue of what to do 
with the Tokens associated with a Place that is affected 
by a change. We note that there are several options: 
  

1. If the Place is removed, then either the Tokens 
contained within that Place are lost 
permanently, or  

2. The Tokens are retained under the condition 
that that Place may be “reborn” or re-inserted 
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into the DPN with the same number of Tokens 
as when it was removed.  

 
In order to maintain complete flexibility, we admit either 
option in our model for DPN. 
 
If either a Place or Transition is removed, then all arcs 
incident or exiting that object are also removed. We 
require this to prevent “dangling” arcs connecting the 
Places and Transitions. In addition, we assume that this 
action takes place recursively as well, so that the removal 
of a Place may cause one or more Transitions to be 
removed as well.  
 
If a Place is created, then either the Place is created 
containing zero Tokens, or we may admit that a newly 
created Place may be given some initial set of Tokens, 
corresponding to an initial state.  Again, in order to 
maintain complete flexibility, we admit either option in 
our model for DPN. 
 
A classic PN does not include any specific reference to 
time and are inherently asynchronous in nature. 
However, we note that some PN extensions (a Timed 
PN) may include explicit time delays on Transition firing 
(after being enabled) or explicit time delay on Token 
insertion into Places (i.e. a Time PN).  In this fashion, the 
movement of Tokens and the related Marking vector 
changes are in fact time dependent. However in both 
cases the structure of the PN, i.e. Places, Transitions, and 
Arcs are time invariant. 
 
In a typical operation, it is assumed that one or more 
Transitions may execute while the DPN is in 
configuration DPN1 and before the configuration change 
has taken place. Therefore we need a representation 
regarding the DPN behavior before and after the 
configuration change.  We do this through the use of the 
Marking vector (i.e. a vector that indicates the integer 
number of Tokens residing in each Place of the PN) as 
described below.  
 
4.2  The Universal Set for Places (or Transitions) and 

Universal DPN 
 
In order to simplify the DPN model we assume that there 
is a bounded “Universal Set” from which all the Places 
or Transitions are to be taken for the DPN.  What this 
essentially means is that we have an upper bound on the 
total number of Places, Pmax, and the total number of 
Transitions, Tmax, that are possible in the DPN. If any 
Place Pi (or Transition Tj) is associated with the DPN 
structure, then it is termed an active, alive or enabled 
Place (Or Transition); otherwise that Place (or 
Transition) is termed to be inactive, dead or disabled. 
As noted above, we do permit the Places or Transitions 

to “change state”, by becoming active (alive) or inactive 
(dead) or vice versa.  
 
Furthermore, we define an active Place or Transition as 
being connected (meaning having at least one input or 
output) or isolated, implying that the Place or Transition, 
while still in the DPN, is not connected to the rest of the 
DPN structure. Clearly any isolated Place or Transition 
can have no role in the firing or execution (the 
movement of Tokens) in a DPN.  
 
4.3  A Functional Representation of DPN 
 
We let DPN represent a Dynamic Petri-Net 
 
  DPN = (P(t), T(t), A(t), M(t)) 
 
Where 

P(t)  = set of Places where the number of Places is a 
function of time t, 
 
T(t)  = set of Transitions where the number of 
Transitions is a function of time, 
 
 A(t)   = set of Arcs  which is a function of time 
 
M(t)   = set of Markings which is a function of time. 

 
More formally,  

 
We represent the DPN configuration change as follows: 
 
DPN1(P,T,A,M) -> DPN2(P’,T’, A’, M’)         
 
where DPN1 is the PN before the configuration change 
has taken place, and DPN2 is the PN after the 
configuration change has taken place. 

 
We note that DPN1 and DPN2 may have a different 
number of Places, Transitions, or interconnections as 
indicated above. 
 
In a typical operation, it is assumed that one or more 
enabled Transition may execute or fire while the PN is 
in either configuration DPN1 or configuration DPN2. 
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4.4   A Many Sorted Algebra for DPN 
 
In this section a more rigorous setting shall be 
established for the DPN using a Many Sorted Algebra.  
The Many Sorted Algebra will allow us to precisely 
specify as a function of time the behavior of the DPN 
including configuration changes.   
 
The Many Sorted Algebraic Model of a DPN is 
presented below. We use the standard Many Sorted 
Algebraic notation as described in Giardina, C., 2000. 
More details regarding the definition of a Many Sorted 
Algebra is provided in the above reference. 
 
In particular, we require that the Many Sorted Algebra 
representation of DPN include functions involving 
elements from Carrier Sets of Sorts, and constraints 
involving these functions and elements of Sorts.  Figure 
1 provides a pictorial representation of the DPN.  
 
The Sorts are:  Time (Ti), Transitions (T), Places (P), 
Tokens (To), Values (V).  The actual elements utilized of 
the sorts involved above are called Carrier Sets, and are 
denoted by:  ATi, AT, AP, ATo, AV respectively.  All of 
these sets are nonempty.  We also assume, as 

 
usual, the set AV is Boolean. The Functions of the Many 
Sorted Algebra are: 
 
1. Transition Switch – a function of time that enables or 

disenables Transitions and is denoted by g.  Hence: 
g: ATi x AT ----> AV 

where g(t,n) = 1 means that at time t Transition n is 
alive and  g(t,n) = 0 means that at time t Transition n is 
dead. 

 
2. Place Switch –a function of time that enables or 

disenables Places is denoted by f.  Hence: 
f: ATi x AP ----> AV 

where   f(t,x) = 1 means that at time t Place x is alive 
and  f(t,x) = 0 means that at time t Place x is dead. 

 
3. PTBus – a function that provides a Token path from a 

fixed Place to several Transitions and is denoted by F.  
Hence: 

F : ATi x AP x AT ----> AV 
where F(t,x,n) = 1  means there is a bus path from 
Place x to Transition n  at time t.  (A constraining 
equation will allow this to happen only when both 
g(t,n) = 1 and f(t,x) = 1), otherwise it must be that 
F(t,x,n) = 0 meaning that there is no path. 

 
4. TPBus – a function that provides Token paths from a 

given Transition to several Places and is denoted by G. 
Hence: 

G: ATi x AT x AP ----> AV 
where G(t,n,x) = 1 means that there is a bus path from 
Transition n to Place x at time t.  A constraining 
equation will allow this to occur only when both g(t,n) 
= 1 and f(t,x) = 1, otherwise it must be that G(t,n,x) = 
0 meaning that there is no path.  

 
5. Transition Firing – a function that causes the Tokens 

to move from Place to Place and is denoted by H. 
Thus: 

H: ATi x AP x ATo ----> AV 
where for every value of in ATi and for every p in AP 
there is exactly one k in ATo such that H(t,p,k) = 1. 
This means that Place p has k Tokens. For every other 
j in ATo, H(t,p,j) = 0.  We note that only enabled 
Transitions may fire or execute. 

 
For instance, Figure 2 below illustrates a Dynamic Petri 
Net environment. A circle represents a Place and the box 
represents a Transition.   The outline indicates that the 
Place or Transition is alive; its absence indicates that the 
Place or Transition is dead. Here, in Figure 2a, Places x 
and y as well as Transition n are not alive, but are dead.  
Diagrams, b, c, d illustrate the successive enabling of 
Place y, then Transition n, and finally Places x. 

 

Places Tokens

Time

Transitions

Values

||
||

|

||

|

|||||||
|||

|

| |||

TPBus

Firing

PTBus Place Switch

Transition 
Switch

|

Figure 1. The Many Sorted Algebraic Model for a 
DPN System.  

a)

b)

c)

x n y

d)  
Figure 2.   DPN with Alive and Dead Places/ 
Transitions. 
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As another example, in Figure 3i, all Transitions and 
Places are enabled, indicated by dark lines around the 
squares and circles and the solid lines interconnecting the 
Places and Transitions.   This diagram represents "The 
Universal Dynamic Petri Net", meaning that there are no 
other possible Places or Transitions allowed to be 
created.   However, deletion of Places or Transitions is 
allowable.   Dotted lines indicate removal of the arc 
connecting a Place or Transition. 

 
Figure 3.   Dynamic Petri Net with (Recursive) Place / 
Transition Removal 
 
In the example above, if Place b dies, as indicated by 
dotted lines around this Place, and illustrated in Figure 
3ii then the TPBus from Transition 3 is removed as well 
as the PTBus connecting Transition 2.  Moreover, if 
Transition 2 is then removed, the TPBus into Place a and 

the PTBus from Place c is also removed.  The final result 
is illustrated in Figure3iii.   
 
4.5  DPN Marking and Reachability Tree 
 
The Marking of a PN is typically defined as a fixed size 
vector, whose size is determined by the number of Places 
in the PN.  The elements of the vector are typically 
positive integers.  However, in our case, the Marking 
must represent the fact that Places may be added or 
deleted. Hence, the Marking vector length is fixed at 
|Pmax|. We also need a way to represent Places that are 
not alive in the DPN. We use the symbol "-" in the 
Marking vector to indicate that that particular Place is 
inactive (or dead) and not involved with the DPN 
activities. As previously mentioned, the resident Tokens 
in the Places that are deleted may be either lost or 
retained for possible re-introduction to the DPN that the 
associated Place is made active again. 

 
Figure 4.   Dynamic Petri Net Marking Under Place 
Removal 
 
In Figure 4i the same DPN is given as that illustrated in 
Figure 3i.  However, now the Tokens have been assigned 
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to the Places.  This is called the Marking of the DPN and 
is indicated by placing a non negative integer within the 
circle representing the respective Place.  It is again 
illustrated as a Marking vector whose tuple provides the 
number of Tokens assigned to the respective Places.  
Indeed, the five tuple: (5 2 3 2 4) is shown in Figure 4i. 
 
Figure 4ii illustrates the tuple assignment after Place b 
died.  This assignment is used in subsequent operations 
involving the network.  For instance, since all the Places 
in the above diagram have a non zero number of Tokens, 
any of the Transitions 1, 3, or 4 can fire.  The usual 
method of illustrating the firing is given using a tree 
structure below in Figure 5.  The DPN illustrated in the 
top of this diagram is precisely the same as the one 
shown in Figure 4ii. 
 
Figure 5 illustrates the Reachability Tree and the "final" 
Token count per each Place. When Transition 1, or 
Transition 3 or Transition 4 fire, the Token count in each 
Place for each possible Transition execution is shown in 
Figure 5.   

Figure 5   Reachability Tree for a DPN 
 
 

5.   APPLICATION OF DPN TO A 
TOPOLOGY REPRESENTATION 

 
5.1  Background – Using the Directed Graph (DG) 

Model 
 
It is well known that packet communication network 
topology is typically represented by directed graphs 
(DG). Under this scheme, the node of the graph 
represents the packet switch (or packet radio), while the 
arc (or edge) of the graph represents the communication 
channel between two nodes or radios. As packets move 

through the network, they traverse from node to node 
through the connecting edges or arcs.  
 
In order to provide a concrete example, we provide 
Figure 6, as the traditional directed graph model of the 
broadcast radio network. In that figure, we show 5 nodes, 
represented by the circles, and 6 edges, as represented by 
the directed arcs. Thus G (V, E) is the directed graph for 
the network, where V is the set of nodes, and E is the set 
of edges.  We call this model as the DG model, or 
directed graph model. However, since each edge is 
associated with a single source node, and a single 
destination node, we cannot readily distinguish a point-
to-point channel from a broadcast radio one.  
 
In the figure, we desire a broadcast radio channel from 
node 1 to nodes 2, 3, and 4 as the set of edges e1, e2, and 
e3. Thus, a single packet from node 1 would have to be 
associated with a packet flowing simultaneously on the 
three edges e1, e2, and e3.  Clearly this is not easily 
represented by the directed graph model. 

Figure 6.   Directed graph model of a network 
 
There is another difficulty with the simple graph 
theoretic representation for the broadcast radio 
environment, and that is the potential for interference. 
Specifically, when one radio transmits a packet, all other 
radios within its one hop communication range are 
capable of receiving it. If one of these one hop neighbors 
is also receiving a packet from a third transmitter, then 
interference will result, and neither packet may be 
correctly received. This interference which is a result of 
a node receiving two or more simultaneous transmissions 
is not easily represented with a simple directed graph 
model. In Figure 7, we assume that nodes 2, 3 and 4 have 
packets to be transmitted, and they collide at the 
receiving node, node 5. This is represented in Figure 7 
pictorially, although we cannot represent this 
mathematically. 

 
Figure 7.   Packet collision at node 5 
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5.2 The DPN Model 
 
In Figure 8, we show the equivalent DPN model of the 
network shown in Figure 6.  Here, the nodes in the DG 
model are replaced one-to-one (i.e. in one-to-one 
correspondence) by the Places in the DPN. The broadcast 
radio channel is modeled as DPN transition, where the 
in-arc is an arc from the source Place to the Transition, 
and a set of out-arcs from the Transition leads to each of 
the one-hop neighbors of the source Place.  Thus, the 
DPN model is very similar to the DG model, with the 
major difference being the replacement of the arcs by a 
transition.  

 
Figure 8.  DPN model of a network. 
 
The broadcast nature of the channel can readily be 
demonstrated as follows.  We represent a packet as a 
Token that residues in a Place in the DPN. With as single 
Token in the Place P1, the Transition T1 is enabled and 
capable of firing or being executed. When T1 does fire or 
execute, then the single token in Place P1 is removed, 
and simultaneously a token is deposited in each Place P2, 
P3, and P4.  With the simultaneous creation of a Token in 
each of the receiving Places, we can accurately represent 
the simultaneous reception of an identical packet at 

each receiving radio node. This is shown at Figure 9, 

prior to the packet transmission, while Figure 10 
indicates the simultaneous packet reception at nodes (or 
Places) P2, P3, and P4. As before, the integers inside the 
Place represent the number of Tokens, or packets in that 
Place.  
 
Using the DPN model, we can readily model effects of 
packet collisions or interference. In Figure 10, we 
assume that Places P2, P3, and P4 each have a packet to 
be transmitted. Thus, Transition T2, T3, and T4 are ALL 
enabled (capable of executing). If during a single 
timeslot or execution period they all did fire, then each of 
the tokens in P2, P3, and P4 would be removed, and three 
Tokens would be therefore deposited in Place P5.  Since 
Place P5 initially had zero Tokens and contained three 
new tokens after the Transitions fired, we can readily see 
that a (multiple) packet collision has occurred, as shown 
in Figure 11. 

 
 
We can also use the DPN to represent the finite error rate 
of packet channels, by associating with each arc exiting a 
Transition, a non-negative value that could be used to 
represent the probability of a packet loss or bit error. 
Space limitations prevent us from further presentation of 
this capability. 
 
In addition, we can also use the DPN to represent node 
mobility, or node destruction. To represent a node being 
lost, destroyed, or inoperative, we simply remove that 
Place from the DPN, as well as any entering or exiting 
arcs. If the resulting configuration of the DPN contains 
any Transitions that have only inputs or outputs or 
neither, then it should also be removed from the DPN 
configuration.  The loss of a communications link is 
similarly represented by removal of the associated arc. 
 

CONCLUSIONS/BENEFIT TO THE 
WARFIGHTER 

 
We have presented an extension to Petri-Nets that can be 
used to model dynamic system behavior by structural 
changes in the PN. A mathematical formalization was 
presented that highlights this new behavior in both 
traditional as well as Many-Sorted Algebra form. Finally, 
a simple model that represents the broadcast nature of the 
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Figure 10.   Ad hoc network after P1 transmits the 
packet. 
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Figure 9.   Ad hoc network with P1 ready to transmit.
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Figure 11.   Ad hoc network showing packet collision 
at node (or Place) P5 .
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radio channel was also presented. 
 
It is well known that the Army’s Future Combat System 
(FCS) relies heavily on ad hoc radio network 
communication. The precise and accurate mathematical 
representation of the communication network 
environment is critical to the proper and reliable design 
of both the communication network protocols as well as 
the network performance analysis as indicated by the 
recent research in (Network Council 2005). In that 
report, the modeling, simulation, testing, and prototyping 
of large networks is identified as a critical research area. 
It is hoped that this earlier research can be continued and 
contribute to the body of knowledge that can be used by 
the Army in the design, analysis and testing of large ad 
hoc packet networks that are and continue to be critical 
to the successful conduct of military operations. 
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